March 28, 2014 Time : 55 minutes

NAME.	
ID#	

Spring 2013-14

_

Circle your section number :

Sabine El Khoury		Michella Bou Eid		Monique Azar			Hazar Abu-Khuzam				
1	2	3	4	5	6	7	8	9	10	11	12
9 M	2 F	8 M	1 W	2 F	1 M	3:30	5 T	12:30	1 F	11 M	11 F
						Т		Т			

PROBLEM GRADE

PART I

1 ------ /20 2 a. ----- /12 b. ----- /12 3 ----- /15 4. ----- /10

PART II

5	6	7	8	9
a	а	а	a	a
a b	b	b	a b	b
c	c	c	c	c
d	d	d	d	d
e	e	e	e	e

5-9 ----- / 15

<u>PART III</u> Answer <u>**True</u>** or <u>**False**</u> only in the table below:</u>

Α	В	С	D	Ε	F	G	Н

10 ----- / 16

TOTAL ----- /100

PART I. Answer each of the following problems in the space provided for each problem (Problem 1 to Problem 4).

1. Let A=
$$\begin{pmatrix} 1 & -1 & -1 & 1 \\ 2 & -1 & -3 & 4 \\ 3 & -3 & -2 & 6 \\ 1 & -1 & 0 & 4 \end{pmatrix}$$

(a) Find a basis of the null space N(A).

(b) Find a basis of the column space Col(A).

[20 points]

2. Show that each of the following is a **subspace** of the corresponding vector space and find a **basis** for each:

(a) Let U be the subset of \mathbb{R}^3 defined by:

$$U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in R^3 | z = x - y \right\}$$

[12 points]

Basis of U:

2(b) W= { $p(x) \in P_3 : p'(1) = 0$ }.

[12 points]

Basis of W:

3. Show that if $\{u, v, w\}$ is a basis for a vector space V, then $\{2u - v - w, 3u - v, 2w\}$ is a basis for V.

[15 points]

4. Let V be a vector space. Let U and W be subspaces of V such that U∩W={0}. Suppose that {u₁} is a basis of U, and {w₁, w₂, w₃} is a basis of W. Show that the set {u₁, w₁, w₂, w₃} is linearly independent.

[10 points]

PART II. Circle the correct answer for each of the following problems (Problem 5 to Problem 9) <u>IN THE TABLE OF THE FRONT PAGE</u>. [3 points for each correct answer].

5. The subspace of R³ spanned by
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \right\}$$
 has a dimension equal to

- (a) 1
- (b) 2
- (c) 4
- (d) 3

(e) none of the above.

[3 points]

6. Let V be a vector space of <u>dimension</u> n. Which one of the following statements is <u>FALSE</u>:

- a. Any set of (n+1) vectors in V is linearly dependent.
- b. Any linearly independent set of n vectors in V is a basis of V.
- c. Any set of n vectors spanning V is a basis of V.
- d. Any set of n vectors in V spans V.
- e. none of the above.

7. Let $V = \{ p(x) \in P_3 : p(1) = 0 \text{ and } p(0) = 0 \}$. Then dim V =

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) none of the above.

[3 points]

[3 points]

8. Let S be the space of all upper triangular 3×3 matrices A such that the sum of all entries of A is zero. Then dim S is equal to:

- (a) 3
- (b) 6
- (c) 4
- (d) 5
- (e) none of the above.

[3 points]

9. Let $T: \mathbb{R}^2 \to \mathbb{R}$ be a linear transformation such that $T\begin{pmatrix} 1\\ 0 \end{pmatrix} = 8$ and $T\begin{pmatrix} 1\\ 1 \end{pmatrix} = 3$, then $T\begin{pmatrix} 5\\ 9 \end{pmatrix} =$

(a) 6 (b) -6 (c) 5 (d) -5

(e) none of the above.

[3 points]

10. Answer TRUE or FALSE only (2 points for each correct answer) IN THE TABLE IN THE FRONT PAGE

A. Any set of 2 vectors in \mathbb{R}^3 can be extended (enlarged) to become a basis of \mathbb{R}^3 .

B. The polynomials 2+3x, 3-4x³, x+x³, 1+x-x², 5x+2x² are linearly dependent . in P₃

C. Any subspace of a vector space is linearly independent.

D. Let W=
$$\left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \in M_{2\times 2} \mid a, b \in R \right\}$$
, then W is a subspace of M₂×₂.

- E. The space of all symmetric 3×3 matrices has dimension 5.
- F. Let W be a subspace of a vector space V, then the set $U= \{A \in V : A \notin W\}$ is a subspace V.
- G. If T:V \rightarrow W is a linear transformation and if {**u**₁, **u**₂, **u**₃} is a linearly independent subset of V, then {T(**u**₁), T(**u**₂), T(**u**₃)} is linearly independent in W.
- H. Let $V = \{ p(x) \in P_2 : p''(x) = 0 \}$. Then dim V=2.

[16 points]