March 28, 2014
Time : 55 minutes

MATHEMATICS 218
QUIZ II

NAME.

ID\#

Spring 2013-14
Circle your section number :

Sabine El Khoury				Michella Bou Eid				Monique Azar			Hazar Abu-Khuzam		
1	2	3	4	5	6	7	8	9	10	11	12		
9 M	2 F	8 M	1 W	2 F	1 M	$3: 30$ T	5 T	$12: 30$ T	1 F	11 M	11 F		

PROBLEM GRADE

PART I

1 ------- /20
2 a. ------- /12
b. ------- /12

3 ------- / 15
4. ------- / 10

PART II

$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
a	a	a	a	a
b	b	b	b	b
c	c	c	c	c
d	d	d	d	d
e	e	e	e	e

5-9 ------- / 15
PART III Answer True or False only in the table below:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}

10 ------- / 16

TOTAL

PART I. Answer each of the following problems in the space provided for each problem (Problem 1 to Problem 4).

1. Let $\mathrm{A}=\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ 2 & -1 & -3 & 4 \\ 3 & -3 & -2 & 6 \\ 1 & -1 & 0 & 4\end{array}\right)$
(a) Find a basis of the null space $\mathrm{N}(\mathrm{A})$.
(b) Find a basis of the column space $\operatorname{Col}(\mathrm{A})$.
2. Show that each of the following is a subspace of the corresponding vector space and find a basis for each:
(a) Let U be the subset of \mathbb{R}^{3} defined by:

$$
\mathrm{U}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in R^{3} \right\rvert\, \mathrm{z}=\mathrm{x}-\mathrm{y}\right\}
$$

[12 points]

2(b) $\mathrm{W}=\left\{p(x) \in P_{3}: p^{\prime}(1)=0\right\}$.
[12 points]

Basis of W:
3. Show that if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for a vector space V , then $\{2 \mathbf{u}-\mathbf{v}-\mathbf{w}, \mathbf{3 u - v}, \mathbf{2 w}\}$ is a basis for V.
[15 points]
4. Let V be a vector space. Let U and W be subspaces of V such that $\mathrm{U} \cap \mathrm{W}=\{0\}$. Suppose that $\left\{\mathbf{u}_{1}\right\}$ is a basis of U, and $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is a basis of W. Show that the set $\left\{\mathbf{u}_{1}, \mathbf{w}_{1}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is linearly independent.

PART II. Circle the correct answer for each of the following problems (Problem 5 to Problem 9) IN THE TABLE OF THE FRONT PAGE . [3 points for each correct answer].

5. The subspace of R^{3} spanned by $\left\{\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)\right\}$ has a dimension equal to
(a) 1
(b) 2
(c) 4
(d) 3
(e) none of the above.
6. Let V be a vector space of dimension n . Which one of the following statements is FALSE:
a. Any set of $(\mathrm{n}+1)$ vectors in V is linearly dependent.
b. Any linearly independent set of n vectors in V is a basis of V .
c. Any set of n vectors spanning V is a basis of V .
d. Any set of n vectors in V spans V .
e. none of the above.
7. Let $\mathrm{V}=\left\{p(x) \in P_{3}: p(1)=0\right.$ and $\left.p(0)=0\right\}$. Then $\operatorname{dim} \mathrm{V}=$
(a) 1
(b) 2
(c) 3
(d) 4
(e) none of the above.
[3 points]
8. Let S be the space of all upper triangular 3×3 matrices A such that the sum of all entries of A is zero. Then $\operatorname{dim} S$ is equal to:
(a) 3
(b) 6
(c) 4
(d) 5
(e) none of the above.
9. Let $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a linear transformation such that $T\binom{1}{0}=8$ and $T\binom{1}{1}=3$, then $T\binom{5}{9}=$
(a) 6
(b) -6
(c) 5
(d) -5
(e) none of the above.
[3 points]
10. Answer TRUE or FALSE only (2 points for each correct answer)

IN THE TABLE IN THE FRONT PAGE
A. Any set of 2 vectors in R^{3} can be extended (enlarged) to become a basis of R^{3}.
B. The polynomials $2+3 \mathrm{x}, 3-4 \mathrm{x}^{3}, \mathrm{x}+\mathrm{x}^{3}, 1+\mathrm{x}-\mathrm{x}^{2}, 5 \mathrm{x}+2 \mathrm{x}^{2}$ are linearly dependent. in P_{3}
C. Any subspace of a vector space is linearly independent.
D. Let $\mathrm{W}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & 1\end{array}\right) \in M_{2 \times 2} \right\rvert\, \quad a, b \in R\right\}$, then W is a subspace of $\mathrm{M}_{2} \times_{2}$.
E. The space of all symmetric 3×3 matrices has dimension 5 .
F. Let W be a subspace of a vector space V , then the set $\mathrm{U}=\{A \in V: \mathrm{A} \notin \mathrm{W}\}$ is a subspace V.
G. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation and if $\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ is a linearly independent subset of V , then $\left\{\mathrm{T}\left(\mathbf{u}_{1}\right), \mathrm{T}\left(\mathbf{u}_{2}\right), \mathrm{T}\left(\mathbf{u}_{3}\right)\right\}$ is linearly independent in W .
H. Let $\mathrm{V}=\left\{p(x) \in P_{2}: p^{\prime \prime}(x)=0\right\}$. Then $\operatorname{dim} \mathrm{V}=2$.

